Math 312- HW5 Due Date: 28/11/17

- 1. Let R and S be commutative rings with unity. If ϕ is a surjective homomorphism from R to S and the characteristic of R is nonzero, prove that the characteristic of S divides the characteristic of R.
- 2. Prove that the rings R_1 and R_2 are not isomorphic

(a) $R_1 = \mathbb{Q}, R_2 = \mathbb{Z}$ $R_1 = \mathbb{Z}, R_2 = 2\mathbb{Z}$ (b) $R_1 = M_{22}(\mathbb{Z}_4), R_2 = M_{22}(\mathbb{Z}_6)$ (c) $R_1 = \mathbb{Z}, R_2 = \mathbb{Z} \times \mathbb{Z}$

- 3. Let R and S be nonzero commutative rings with unity and let $\phi : R \to S$ be a surjective ring homomorphism. Prove that S is an integral domain if and only if ker ϕ is a prime ideal of R. Also prove that S is a field if and only if ker ϕ is a maximal ideal of R.
- 4. Let R and S be rings. Consider the map $\phi : R \times S \to R$ given by $\phi((a, b)) = a$.
 - (a) Prove ϕ is a ring homomorphism.
 - (b) Prove that ϕ is surjective
 - (c) Find ker ϕ
- 5. Assume that R is a nonzero ring with unity and S is a nonzero ring. If $\phi : R \to S$ is a surjective ring homomorphism, prove that $\phi(u)$ is a unit in S for every unit u in R.
- 6. Assume that $\phi : R \to S$ is a ring homomorphism. Assume that I is an ideal of R and J an ideal of S such that $\phi(I) \subseteq J$. Prove that the map $\psi : R/I \to S/J$ given by $\psi(a+I) = \phi(a) + J$ is a ring homomorphism. (Note: You must first show that ψ is well-defined)