All rings in the test are nonzero

Question 1 (6+4 points)

- (a) Let I be an ideal in a ring R. Define $[R:I]=\{r\in R\mid xr\in I \text{ for every }x\in R\}$. Prove that [R:I] is an ideal of R that contains I. Solution:
- (i) for any $x \in R$ we have $x0 = 0 \in I$ so $0 \in [R:I]$. Therefore $[R:I] \neq \emptyset$
- (ii) Suppose that $r, s \in [R:I]$. For any $x \in R$ we have $xr \in I$ and $xs \in I$ therefore $x(r-s) = xr xs \in I$ since I is an ideal of R. This shows that $r-s \in [R:I]$
- (iii) Suppose that $r \in [R:I]$ and $s \in R$. We must show that $rs \in [R:I]$ and $sr \in [R:I]$. Let $x \in R$. We have x(rs) = (xr)s. Since $r \in [R:I]$ therefore $xr \in I$ so $(xr)s \in I$ since I is an ideal of R. This shows that $x(rs) \in I$ so $rs \in [R:I]$. Also we have $x(sr) = (xs)r \in I$ (because $r \in [R:I]$) so $sr \in [R:I]$

From (i), (ii) and (iii) [R:I] is an ideal of R

Now let $a \in I$ and $x \in R$. Then $xa \in I$ since I is an ideal of R. This proves that $a \in [R:I]$ so $I \subseteq [R:I]$

(b) Suppose that R is a commutative ring and P is a prime ideal of R. Prove that [R:P]=P. Solution:

From part (a) we have $P \subseteq [R:P]$. We need to show that $[R:P] \subseteq P$. Assume that $r \in [R:P]$. Then by the definition of [R:P] we have $rr \in P$. Since P is a prime ideal of R this implies that $r \in P$. Therefore $[R:P] \subseteq P$ thus proving that [R:P] = P.

Question 2 (6+4 points)

(a) An element a of a ring R is called nilpotent if $a^n = 0$ for some integer $n \ge 1$. Now let R be a commutative ring and let N be the set all the nilpotent elements of R. Prove that N is an ideal of R.

Solution:

- (i) We have $0^1 = 0$ so $0 \in N$. Therefore $N \neq \emptyset$
- (ii) Suppose that $a, b \in N$. Then $a^{m_1} = 0$ and $b^{m_2} = 0$ for some positive integers m_1 and m_2 . Note that if t is an integer with $t > m_1$ then $t = m_1 + s$ for some positive integer s so $a^t = a^s a^{m_1} = 0$. A similar observation applies to b and m_2 . Let $m = \max\{m_1, m_2\}$. Note that we have $a^m = 0$ and $b^m = 0$. We also have $(-b)^m = (-1)^m b^m = 0$. Now let n = 2m. By the binomial theorem we have $(a b)^n = \sum_{i=0}^n \binom{n}{i} a^i (-b)^{n-i}$. Consider a typical term in this sum $\binom{n}{i} a^i (-b)^{n-i}$. We cannot have i < m and n i < m because that would imply that n = i + n i < 2m. Therefore either $a^i = 0$ or $(-b)^{n-i} = 0$. This shows that $(a b)^n = 0$. Thus $a b \in N$
- (iii) Suppose that $a \in N$ and $r \in R$. Since a is nilpotent $a^n = 0$ for some positive integer n. Then we have $(ra)^n = r^n a^n = 0$. Since R is commutative we also have $(ar)^n = 0$. Thus $ra, ar \in N$

From (i), (ii) and (iii) N is an ideal of R.

(b) Let R and N be as in part (a). Prove that R/N is a ring with no nonzero nilpotent elements.

Solution:

Suppose that a + N is nilpotent. Then $(a + N)^n = 0 + N$ for some positive integer n. Then $a^n + N = (a + N)^n = 0 + N$ so $a^n \in N$. Therefore $a^n \in N$ which implies that $(a^n)^m = 0$ for some positive integer m so $a^{nm} = 0$. This implies that $a \in N$ so a + N = 0 + N

Question 3 (4+3+3 points)

(a) Let R be a finite commutative ring with unity. Prove that every prime ideal of R is maximal (Hint: If P is a prime ideal of R consider the quotient R/P). Solution:

Suppose that P is a prime ideal of R. Then R/P is an integral domain. Since R is finite therefore R/P is a finite integral domain so is a field. This implies that P is a maximal ideal of R.

(b) Suppose that F is a field and I is an ideal of F. Prove that $I = \{0\}$ or I = F. Solution:

Suppose that $I \neq \{0\}$. Then I contains a nonzero element a of F. Since F is a field and a is not zero therefore a is a unit. Then since I is an ideal we have $1 = a^{-1}a \in I$. Now let $c \in F$ then $c = c1 \in I$. Therefore I = F

(c) Let R be a ring with additive identity 0 and $a \in R$. Prove that 0a = 0. Solution:

We have 0a = (0+0)a = 0a + 0a. Adding -0a to both sides of this equation we get 0 = 0a

Question 4 (10 points)

Label each of the following statements as True (${f T}$) or False (${f F}$)

(i)
$$\langle 1 \rangle \times \langle 0 \rangle$$
 is a maximal ideal of $\mathbb{Z}_4 \times \mathbb{Z}_2$ (T)

(ii) If
$$R$$
 is an integral domain and G is a finite group, then the group ring RG is an integral domain (\mathbf{F})

(iii) If
$$R$$
 is a ring and $a \in R$ is a unit, then a is not a zero divisor (\mathbf{T})

(iv) If R is a ring with unity 1 and
$$5 \cdot 1 = 0$$
 in R, then $char(R) = 5$